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Further thoughts on convective heat transport in a 
variable-viscosity fluid 
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(Received 7 October 1977) 

In  a previous paper (Booker 1976) we found experimentally that the convective heat 
transport in a fluid with temperature-dependent viscosity decreased significantly as 
the ratio of the viscosities at the top and bottom boundaries increased. In  trhis note, 
we show that this decrease in heat transport can be entirely accounted for by an 
increase in the critical Rayleigh number with variable viscosity. 

In  a recent paper (Booker 1976)) we reported measurements of the heat transport by 
natural thermal convection in a fluid with strongly temperature-dependent viscosity 
confined between rigid horizontal plates. We found that, at  a fixed value of the Rayleigh 
number based on the viscosity at  the mean of the boundary temperatures, an increase 
of the ratio of the viscosities at  the top and bottom boundaries resulted in a slight but 
significant decrease in the heat transport relative to a layer with constant viscosity. 
At a viscosity ratio of 300 this decrease was 12 yo. In this note we shall show that this 
decrease can be entirely predicted from the effect of the variable viscosity on the 
critical Rayleigh number. 

Table 1 summarizes our experimental data. The critical Rayleigh number R, for 
each run is also listed. Rc is the Rayleigh number for the onset of convection in a layer 
with a linear vertical temperature profile such that the .riscosities at  the top and 
bottom boundaries are the same as in the convecting layer. In principle, R, could be 
measured by keeping the temperature drop across the fluid layer fixed and varying the 
depth. In  practice, however, such a measurement would be extremely difficult and 
the values in table 1 are calculated in a manner similar to that of Liang (1969). 

With the usual non-dimensionalization, the governing equation for marginal 
stability of a temperature perturbation of horizontal wavenumber a is 

-Raze = f,,(D4 -a4) 0 + 2fs(D2 - az)2 DO + f (D2 - a2)3 0, ( 1 )  

where D and the subscript z mean differentiation with respect to the vertical co- 
ordinate z and f = V / V ,  is the ratio of the kinematic viscosity v to its value vo at the 
mean of the boundary temperatures. The Rayleigh number is 

R = agATd3/Kvo, 

where a and K are the thermal expansion coefficient and thermal diffisivity of the 
fluid (assumed temperature independent), g is the acceleration due to gravity, AT is 
the temperature difference across the layer and d is the layer depth. To first order, 
only the dependence of viscosity on the undisturbed linear temperature profile enters 
(1) and f is therefore a known function of z .  
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Run V,xIVIQ,n Rc R N NINO N / N T  

1 2.47 1755 14900 2.72 0.993 1.000 
2 2.70 1765 58 700 3.99 0.991 1.000 
3 1.41 1713 115000 4.85 0.997 0.998 
4 2.84 1772 160 000 5.34 1.001 1.01 1 
5 4.11 1799 397 000 6-87 0,997 1.012 
6 9.70 1975 21 000 2.92 0.967 1.007 
7 10.4 1987 66 500 4.03 0.967 1.009 
8 9.75 1976 176 000 5.31 0,969 1.009 
9 31.4 2 244 54 700 3.72 0.943 1.018 

10 114 2 574 15200 2.56 0.930 1.043 
11 127 2613 56 100 3.55 0.893 1.006 
12 113 2 572 122 000 4.47 0.904 1.014 
13 152 2 677 69 000 3.72 0.883 0.996 
14 152 2 677 173000 4.86 0.891 1.01 1 
15 262 2813 22 300 2.77 0.903 1-039 
16 300 2 863 85 400 3.87 0.865 1.000 
17 284 2 846 203000 5.01 0.878 1.014 
18 304 2 863 207 000 5.04 0.879 1.016 
19 287 2 856 220 000 5.11 0.876 1.012 

TABLE 1. The Rayleigh numbers R, viscosity ratios v,,/v,,,,~ and measured Nusselt numbers N 
for thermal convection in polybutene no. 8 are from Booker (1976). The critical Rayleigh num- 
bers Rc for each run were calculated in the manner described in the text. No and NT are predicted 
by relations (2) and (4) respectively. 

The sixth-order equation ( 1 )  is easily transformed into six first-order differential 
equations which can be numerically integrated by standard techniques. For a fixed 
wavenumber a, the boundary conditions (tangential and normal velocity components 
and temperature perturbation zero on each boundary) can be satisfied only for certain 
values of the eigenvalue R. We then vary the wavenumber to find the absolute mini- 
mum R, which is called R,. The calculated values of R, in table 1 increase as the 
viscosity ratio vm,,/vmin increases. 

Rossby’s (1969) measurements of the Nusselt number (ratio of total heat transport 
to  conductive heat transport) for a fluid of high Prandtl number V / K  with a small 
viscosity ratio are well represented for R > 4000 by the curve 

No = 0*184R0281. (2) 

Our results at  a small viscosity ratio (runs 1-5) are in excellent agreement with this 
relation. In  order to compare properly the variable-viscosity results with those for 
constant viscosity one needs to incorporate the fact that the critical Rayleigh numbers 
are different. One possibility is to assume that (2) is a special case of a more general 
relation 

N = C(R/R,)P. (3) 

For constant viscosity, I?, = 1708 and (2) implies C = 1.49. Booker (1976) found that 
was independent of the viscosity ratio. We now show that C is also independent of 

the viscosity ratio. 
Table 1 lists the ratio of the measured Nusselt number N to 

NT = 1*49(R/R,)0’281. (4) 
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The mean value of N/NT for the seventeen measurements excluding runs 10 and 15 is 
1.008 with a standard deviation of 0-007. This should be compared with a drop of 12 % 
in N / N o  a t  a viscosity ratio of 300. There is a clear tendency for high Rayleigh number 
experiments to have higher values of N/N, ,  but no evidence of a trend with viscosity 
ratio. This could be a systematic effect associated with our correction for heat trans- 
port in the plastic sides of the apparatus. A simpler explanation is the lack of sufficient 
significant figures in relations (2) and (4). The probable errors in Rossby’s data simply 
do not warrant more significant figures, however, and we conclude that NINT is not 
significantly different from unity, Thus for strong convection (R 2 lo&) and viscosity 
ratios up to at  least 300, (4) accurately predicts the heat transport and Cis independent 
of the viscosity ratio. We conclude that the observed decrease in heat transport 
relative to a constant-viscosity fluid can be entirely attributed to the effect of the 
temperature-dependent viscosity on the critical Rayleigh number. This rather remark- 
able result means that, apart from the critical Rayleigh number, a strongly 
temperature-dependent viscosity has no effect on convective heat transport. 

Experiments 10 and 15 have both a high viscosity ratio and a relatively low Rayleigh 
number. Booker (1 976) suggested that their apparently anomalously high heat trans- 
port was a systematic error either in the measurements themselves or in the comparison 
with relation (2) in the low Rayleigh number range. We still have no adequate explana- 
tion for these two points, but it is clear that the effect of variable viscosity on R, is 
not the answer. Both N / N ,  and N/N,. are 3 % higher than one would predict from the 
higher Rayleigh number points with similar viscosity ratios. 

This work was supported by the National Science Foundation under grant number 
DES75-2 1793. 
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